The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
نویسندگان
چکیده
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.
منابع مشابه
Numerical Study of the Effect of Surface Tension on Vapor Bubble Growth during Flow Boiling in Microchannels
Microchannel heat sinks typically consist of parallel channels connected through a common header. During flow boiling random temporal and spatial formation of vapor bubbles may lead to reversed flow in certain channels which causing an early CHF condition. Inside the microchannels the liquid surface tension forces is expected to play an important role and impact the vapor bubble growth and corr...
متن کاملAFRL-OSR-VA-TR-2014-0183 (YIP 11) Advanced Nanostructures for Two-Phase Fluid and Thermal Transport
This report summarizes our three-year effort on advanced micro and nanostructures for fundamental studies of fluid manipulation and enhanced two-phase heat transfer. First, we studied the role of micro/nanostructures on pool boiling heat transfer. We fabricated well-defined microstructured surfaces in silicon and performed systematic pool boiling experiments in which we demonstrated that increa...
متن کاملHeat Transfer Mechanisms During Flow Boiling in Microchannels
The forces due to surface tension and momentum change during evaporation, in conjunction with the forces due to viscous shear and inertia, govern the two-phase flow patterns and the heat transfer characteristics during flow boiling in microchannels. These forces are analyzed in this paper, and two new nondimensional groups, K1 and K2 , relevant to flow boiling phenomenon are derived. These grou...
متن کاملNumerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil
A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...
متن کاملMolecular origin of contact line stick-slip motion during droplet evaporation
Understanding and controlling the motion of the contact line is of critical importance for surface science studies as well as many industrial engineering applications. In this work, we elucidate the molecular origin of contact line stick-slip motion during the evaporation of liquid droplets on flexible nano-pillared surfaces using molecular dynamics simulations. We demonstrate that the evaporat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of fluids engineering
دوره 137 3 شماره
صفحات -
تاریخ انتشار 2015